28 research outputs found

    Functional and Structural Studies on the \u3cem\u3eNeisseria gonorrhoeae\u3c/em\u3e GmhA, the First Enzyme in the \u3cem\u3eglycero-manno\u3c/em\u3e-heptose Biosynthesis Pathways, Demonstrate a Critical Role in Lipooligosaccharide Synthesis and Gonococcal Viability

    Get PDF
    Sedoheptulose-7-phosphate isomerase, GmhA, is the first enzyme in the biosynthesis of nucleotide-activated-glycero-manno-heptoses and an attractive, yet underexploited, target for development of broad-spectrum antibiotics. We demonstrated that GmhA homologs in Neisseria gonorrhoeae and N. meningitidis (hereafter called GmhAGC and GmhANM, respectively) were interchangeable proteins essential for lipooligosaccharide (LOS) synthesis, and their depletion had adverse effects on neisserial viability. In contrast, the Escherichia coli ortholog failed to complement GmhAGC depletion. Furthermore, we showed that GmhAGC is a cytoplasmic enzyme with induced expression at mid-logarithmic phase, upon iron deprivation and anaerobiosis, and conserved in contemporary gonococcal clinical isolates including the 2016 WHO reference strains. The untagged GmhAGCcrystallized as a tetramer in the closed conformation with four zinc ions in the active site, supporting that this is most likely the catalytically active conformation of the enzyme. Finally, site-directed mutagenesis studies showed that the active site residues E65 and H183 were important for LOS synthesis but not for GmhAGC function in bacterial viability. Our studies bring insights into the importance and mechanism of action of GmhA and may ultimately facilitate targeting the enzyme with small molecule inhibitors

    Structural and Functional Insights Into the Role of BamD and BamE Within the \u3cem\u3eβ\u3c/em\u3e-Barrel Assembly Machinery in \u3cem\u3eNeisseria gonorrhoeae\u3c/em\u3e

    Get PDF
    The β-barrel assembly machinery (BAM) is a conserved multicomponent protein complex responsible for the biogenesis of β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria. Given its role in the production of OMPs for survival and pathogenesis, BAM represents an attractive target for the development of therapeutic interventions, including drugs and vaccines against multidrug-resistant bacteria such as Neisseria gonorrhoeae. The first structure of BamA, the central component of BAM, was from N. gonorrhoeae, the etiological agent of the sexually transmitted disease gonorrhea. To aid in pharmaceutical targeting of BAM, we expanded our studies to BamD and BamE within BAM of this clinically relevant human pathogen. We found that the presence of BamD, but not BamE, is essential for gonococcal viability. However, BamE, but not BamD, was cell-surface–displayed under native conditions; however, in the absence of BamE, BamD indeed becomes surface-exposed. Loss of BamE altered cell envelope composition, leading to slower growth and an increase in both antibiotic susceptibility and formation of membrane vesicles containing greater amounts of vaccine antigens. Both BamD and BamE are expressed in diverse gonococcal isolates, under host-relevant conditions, and throughout different phases of growth. The solved structures of Neisseria BamD and BamE share overall folds with Escherichia coli proteins but contain differences that may be important for function. Together, these studies highlight that, although BAM is conserved across Gram-negative bacteria, structural and functional differences do exist across species, which may be leveraged in the development of species-specific therapeutics in the effort to combat multidrug resistance

    Combinatorial polymeric conjugated micelles with dual cytotoxic and antiangiogenic effects for the treatment of ovarian cancer

    Get PDF
    Emerging treatment paradigms like targeting the tumor microenvironment and/or dosing as part of a metronomic regimen are anticipated to produce better outcomes in ovarian cancer, but current drug delivery systems are lacking. We have designed and evaluated paclitaxel (PTX) and rapamycin (RAP) micellar systems that can be tailored for various dosing regimens and target tumor microenvironment. Individual and mixed PTX/RAP (MIX-M) micelles are prepared by conjugating drugs to a poly­(ethylene glycol)-<i>block</i>-poly­(β-benzyl l-aspartate) using a pH-sensitive linker. The micelles release the drug(s) at pH 5.5 indicating preferential release in the acidic endosomal/lysosomal environment. Micelles exhibit antiproliferative effects in ovarian cell cancer lines (SKOV-3 (human caucasian ovarian adenocarcinoma) and ES2 (human ovarian clear cell carcinoma)) and an endothelial cell line (HUVEC; human umbilical vein endothelial cells) with the MIX-M being synergistic. The micelles also inhibited endothelial migration and tube formation. In healthy mice, micelles at 60 mg/kg/drug demonstrated no acute toxicity over 21 days. ES2 xenograft model efficacy studies at 20 mg/kg/drug dosed every 4 days and evaluated at 21 days indicate that the individual micelles exhibit antiangiogenic effects, while the MIX-M exhibited both antiangiogenic and apoptotic induction that results in significant tumor volume reduction. On the basis of our results, MIX-M micelles can be utilized to achieve synergistic apoptotic and antiangiogenic effects when treated at frequent low doses
    corecore